Abstract

Continuous variable-quantum key distribution (CV-QKD) based on coherent detection has potential to be a cost-effective solution to deploy secure keys over optical networks. This is due to its compatibility with mature optical communication technologies, such as homodyne and heterodyne detection schemes. Nevertheless, realistic implementations of CV-QKD systems suffer from imperfections in the practical devices used to generate and detect the coherent states. Those imperfections deteriorate the performance of the CV-QKD system and can be exploited by an eavesdropper to steal key information without being detected. In this work, we discuss the impact of practical device imperfections on the excess noise of the CV-QKD and on the achievable transmission distance. We also analyze the impact of detection imperfections on the measurement of the shot noise, and its impact on CV-QKD system security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.