Abstract

This paper considers the problem of practical H eterogeneous w I reless charger P lacement with O bstacles (HIPO), i.e., given a number of heterogeneous rechargeable devices distributed on a 2D plane where obstacles of arbitrary shapes exist, deploying heterogeneous chargers with a given cardinality of each type, i.e., determining their positions and orientations, the combination of which we name as strategies , on the plane such that the rechargeable devices achieve maximized charging utility. After presenting our practical directional charging model, we first propose to use a piecewise constant function to approximate the nonlinear charging power, and divide the whole area into multi-feasible geometric areas in which a certain type of chargers have constant approximated charging power. Next, we propose the Practical Dominating Coverage Set extraction algorithm to reduce the unlimited solution space to a limited one by exacting a finite set of candidate strategies for all multi-feasible geometric areas. Finally, we prove the problem falls in the realm of maximizing a monotone submodular function subject to a partition matroid constraint, which allows a greedy algorithm to solve with approximation ratio of $\frac{1}{2} - \epsilon$ 1 2 - e . We conduct experiments to evaluate the performance. Results show that our algorithm outperforms the comparison algorithms by at least 33.49 percent on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.