Abstract

This paper introduces a new error metric for irradiance caching that significantly outperforms the classic Split-Sphere heuristic. Our new error metric builds on recent work using second order gradients (Hessians) as a principled error bound for the irradiance. We add occlusion information to the Hessian computation, which greatly improves the accuracy of the Hessian in complex scenes, and this makes it possible for the first time to use a radiometric error metric for irradiance caching. We enhance the metric making it based on the relative error in the irradiance as well as robust in the presence of black occluders. The resulting error metric is efficient to compute, numerically robust, supports elliptical error bounds and arbitrary hemispherical sample distributions, and unlike the Split-Sphere heuristic it is not necessary to arbitrarily clamp the computed error thresholds. Our results demonstrate that the new error metric outperforms existing error metrics based on the Split-Sphere model and occlusion-unaware Hessians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.