Abstract

Two practical, efficient, and scalable asymmetric routes to DE ring fragment 7, a key building block in the synthesis of the homocamptothecin derivative diflomotecan 4, are described. The "acetal route" starts from 2-chloro-4-cyanopyridine 8 and represents an enantioselective and optimized modification of the original racemic discovery chemistry synthesis. The inefficient optical resolution procedure was replaced by an efficient asymmetric acetate aldol addition (dr 87:13) to a ketone substrate as the key step generating the (R)-configured quaternary stereocenter with high stereoselectivity. 7 was finally obtained in 8.9% overall yield (er 99.95:0.05) over nine steps, avoiding chromatographic purifications and comparing favorably with the initial procedure. In the related "amide route" starting from 2-chloroisonicotinic acid 41, a secondary amide directing group was used to facilitate the ortho lithiation of the pyridine 3-position. The key step of this protocol again consists of a practical asymmetric acetate aldol addition (dr = 87:13). The DE ring building block 7 was thus obtained in 11.1% overall yield (er > 99.95:0.05) over nine steps requiring only one chromatographic purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call