Abstract

Cryptographic algorithms, protocols, and applications are difficult to implement correctly, and errors and vulnerabilities in their code can remain undiscovered for long periods before they are exploited. Even highly-regarded cryptographic libraries suffer from bugs like buffer overruns, incorrect numerical computations, and timing side-channels, which can lead to the exposure of sensitive data and long-term secrets. We describe a tool chain and framework based on the F* programming language to formally specify, verify and compile high-performance cryptographic software that is secure by design. This tool chain has been used to build a verified cryptographic library called HACL*, and provably secure implementations of sophisticated secure communication protocols like Signal and TLS. We describe these case studies and conclude with ongoing work on using our framework to build verified implementations of privacy preserving machine learning software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.