Abstract
This article studies the practical exponential stability of impulsive stochastic reaction-diffusion systems (ISRDSs) with delays. First, a direct approach and the Lyapunov method are developed to investigate the p th moment practical exponential stability and estimate the convergence rate. Note that these two methods can also be used to discuss the exponential stability of systems in certain conditions. Then, the practical stability results are successfully applied to the impulsive reaction-diffusion stochastic Hopfield neural networks (IRDSHNNs) with delays. By the illustration of four numerical examples and their simulations, our results in this article are proven to be effective in dealing with the problem of practical exponential stability of ISRDSs with delays, and may be regarded as stabilization results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.