Abstract

This paper studies the behavior of singularly perturbed nonlinear differential equations with boundary-layer solutions that do not necessarily converge to an equilibrium. Using the average for the derivative of the slow state variables and assuming the boundary-layer solutions converge exponentially fast to a bounded set, which is possibly parameterized by the slow variable, results on the closeness of solutions of the singularly perturbed system to the solutions of the reduced average and boundary-layer systems over a finite time interval are presented. The closeness of solution error is shown to be of order O(ε) where ε is the perturbation parameter. Moreover, under the additional assumption of exponential stability of the reduced average system, practical exponential stability of the solutions of the singularly perturbed system is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call