Abstract
Recently, gearless type generators, which have very low rotation speed and high torque, have been preferred over the geared type due to the problem of the gearbox reliability. In particular, a high-temperature superconducting generator is promising for wind power applications because of its advantages of weight, size, and efficiency. In this paper, a 10-MW class superconducting wind power generator is designed using Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O wires, and the weight of the superconducting generator is estimated. The finite elements method is used to analyze the magnetic field distribution, and the 3-D CAD program is used to calculate the weight of the super-conducting synchronous generator. The designed 10-MW class superconducting generator is analyzed and discussed considering the proper weight. The designed 10-MW superconducting generator will be effectively utilized in the construction of the 10-MW class wind power generation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.