Abstract

A microwave single-photon detector was developed with highly-excited alkaline Rydberg-atoms in a cooled resonant cavity to search for dark matter axions. This detector belongs to a microwave single-photon counter, thus being free from the standard quantum limit (SQL). High sensitivity of the present detector system was demonstrated by measuring the thermal blackbody radiations in the cavity at temperatures as low as 70 mK where the sensitivity is below the SQL. The detection sensitivity of the present system is mainly limited by stray electric fields present in the detection region. Practical design of a new experimental scheme with a guiding electric field through the atomic-beam trajectory is here presented and discussed to avoid the effect of stray electric field and thus to improve the detection sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call