Abstract

For the multi-degrees of freedom control problem of underwater hydraulic manipulators with non-ignorable valve deadband and strong lumped nonlinearities and uncertainties, a practical continuous fractional-order nonsingular terminal sliding mode control design together with a deadband compensator is presented and studied. The presented method contains three parts a time delay estimation utilized to nearly estimate and compensate the extremely complicated system dynamics, a continuous fractional-order nonsingular terminal sliding mode used to ensure high control performance against the strong lumped nonlinearities and uncertainties, and a valve deadband compensator used to compensate for the non-ignorable valve deadband. The proposed method is model-free thanks to the time delay estimation, and can ensure satisfactory control performance thanks to the continuous fractional-order nonsingular terminal sliding mode and deadband compensator. Stability of the closed-loop control system including the deadband compensator is proved rigorously. Finally, practical 2-degrees of freedom experiments are performed, and corresponding results effectively demonstrate the superiorities of the newly presented controller with deadband compensator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call