Abstract

Construction details and performance evaluation of a radio frequency (rf)-only quadrupole ion guide for use with an electrospray ionization time-of-flight mass spectrometer is presented in this paper. Angiotensin III and cytochrome c were used in these experiments to investigate the ion transmission properties of the rf-only quadrupole for different m/z species. In addition, influence of ion kinetic energies along with the characteristic fragmentation due to collision induced dissociation (CID) were studied. These experiments demonstrate that the transmissions of different m/z ions were not only dependent on the frequency and magnitude of the rf waveform, which is similar to a high vacuum rf-only quadrupole ion guide, but also on the pressure inside the quadrupole chamber. For the pressure range tested, low m/z ions are better focused with increasing pressure. As expected, transmission of ions are subject to space charge limitations when significant numbers of ions are focused on the axis of the quadrupole. It is also observed that CID results are related to transverse motion and longitude motion of ions inside the quadrupole region. Consequently, CID is useful for fragmentation of linear peptides and it is not effective (in present configuration) for large bulky proteins. The kinetic energy of ions that enter the repelling region of the TOFMS is ultimately determined by the ensemble effect resulting from the dc bias potential of the quadrupole (the dominant factor), skimmer-2, pressure inside the quadrupole chamber, and jet expansion. While this system is tested with an ESI source, the operational principle and design criteria are directly applicable for improving other atmospheric pressure ionization sources with time-of-flight mass analyzers such as an inductively coupled plasma ion source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.