Abstract

This paper describes a methodological investigation of the use of gas chromatography/combustion/isotope ratio monitoring mass spectrometry (GC/C/IRMS) for the compound-specific stable isotope analysis of 13C-enriched compounds. Analysis of two 13C-enriched fatty acid methyl esters, possessing delta13C values of approximately 500 per thousand, at a range of concentrations, demonstrated that detectable responses, i.e. chromatographic peaks, could be observed in the 45/44 output even when the compound was present in such low abundance that no peak was observed in the m/z 44 ion chromatogram. A limit of detection, defined as the point at which the signal-to-background ratio was equal to 3, was calculated for two compounds and for both ion chromatograms. The limit of detection in the 45/44 chromatogram was found to be ca. 30 pg injected for methyl 13C-hexadecanoate and ca. 20 pg injected for methyl 13C-octadecanoate, whilst, in the m/z 44 ion chromatogram, detection limits were approximately 180 and approximately 200 pg, respectively. The delta13C value recorded for the analytes was found to be both inaccurate and imprecise below 5 ng of each component injected, although this would not represent a significant drawback in qualitative tracer-type experiments. In a further study of co-injected mixtures of labelled (approximately 500 per thousand) and unlabelled (natural abundance, -20 to -30 per thousand ) fatty acid methyl esters a significant within-run carryover effect was observed, where the isotope values recorded for compounds eluting immediately after enriched components were significantly affected. Whilst this would not affect qualitative results, quantitative data for mixtures containing enriched compounds should be considered with caution. The standards employed in this investigation were enriched to approximately 500 per thousand in 13C; however, these effects would probably be accentuated at higher levels of labelling and with other elements. The limit of detection work demonstrated the potential of GC/C/IRMS as a highly sensitive and selective detector with many possible applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call