Abstract

The field of time-resolved macromolecular crystallography has been expanding rapidly after free electron lasers for hard x rays (XFELs) became available. Techniques to collect and process data from XFELs spread to synchrotron light sources. Although time-scales and data collection modalities can differ substantially between these types of light sources, the analysis of the resulting x-ray data proceeds essentially along the same pathway. At the base of a successful time-resolved experiment is a difference electron density (DED) map that contains chemically meaningful signal. If such a difference map cannot be obtained, the experiment has failed. Here, a practical approach is presented to calculate DED maps and use them to determine structural models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call