Abstract

First-order directional microphone systems for hearing aids have been available for several years. Such a system uses two microphones and has a theoretical maximum free-field directivity index (DI) of 6.0 dB. A second-order microphone system using three microphones could provide a theoretical increase in free-field DI to 9.5 dB. These theoretical maximum DI values assume that the microphones have exactly matched sensitivities at all frequencies of interest. In practice, the individual microphones in the hearing aid always have slightly different sensitivities. For the small microphone separation necessary to fit in a hearing aid, these sensitivity matching errors degrade the directivity from the theoretical values, especially at low frequencies. This paper shows that, for first-order systems the directivity degradation due to sensitivity errors is relatively small. However, for second-order systems with practical microphone sensitivity matching specifications, the directivity degradation below 1 kHz is not tolerable. A hybrid order directive system is proposed that uses first-order processing at low frequencies and second-order directive processing at higher frequencies. This hybrid system is suggested as an alternative that could provide improved directivity index in the frequency regions that are important to speech intelligibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call