Abstract
Chemical ubiquitination is an effective approach for accessing structurally defined, atypical ubiquitin (Ub) chains that are difficult to prepare by other techniques. Herein, we describe a strategy that uses a readily accessible premade isopeptide-linked 76-mer (isoUb), which has an N-terminal Cys and a C-terminal hydrazide, as the key building block to assemble atypical Ub chains in a modular fashion. This method avoids the use of auxiliary-modified Lys and instead employs the canonical and therefore more robust Cys-based native chemical ligation technique. The efficiency and capacity of this isoUb-based strategy is exemplified by the cost-effective synthesis of several linkage- and length-defined atypical Ub chains, including K27-linked tetra-Ub and K11/K48-branched tri-, tetra-, penta-, and hexa-Ubs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.