Abstract

Batch operation of reverse osmosis (RO) has been proposed as a method to reduce seawater RO (SWRO) energy consumption and fouling propensity. In this paper, we use a transient numerical model of the RO process to investigate the impact of several practical loss mechanisms on the overall energetic performance of batch SWRO compared to a conventional continuous system. A critical variable that controls the energetic advantage of batch RO is the reset time between cycles. A large reset time necessitates higher operating flux and therefore results in increased energy consumption. On the other hand, ensuring a low cycle reset time requires higher energy for the refilling process. A batch SWRO design with an atmospheric pressure feed tank and pressure exchangers for energy recovery does not show promise for energy savings. Batch SWRO must be designed with a large number of short pressure vessels (with fewer membranes each) and lower energy recovery losses (e.g., by using pressurized feed storage) in order to reduce energy consumption by up to 8%. These modifications are more complex and hence capital expenses would determine the overall feasibility of such designs to improve seawater desalination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.