Abstract

In the previous chapters, the theory and the main methods of diffraction peak profile analysis were presented. Additionally, the specialties in the measurement and the evaluation of line profiles in the cases of thin films and single crystals were discussed. In this chapter, some practical considerations are given in order to facilitate the evaluation of peak profiles and the interpretation of the results obtained by this method. For instance, the procedures for instrumental correction are overviewed. Additionally, how the prevailing dislocation slip systems and twin boundary types in hexagonal polycrystals can be determined from line profiles is shown. Besides the dislocation density, the vacancy concentration can also be obtained by the combination of electrical resistivity, calorimetric, and line profile measurements. The crystallite size and the twin boundary frequency determined by X-ray peak profile analysis are compared with the values obtained by the direct method of transmission electron microscopy. Furthermore, the limits of line profile analysis in the determination of crystallite size and defect densities are given. Finally, short overviews on the results obtained by peak profile analysis for metals, ceramics, and polymers are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.