Abstract

Abstract The chemical strain effect in solids is the deviation from linear elasticity due to the association and dissociation of point defects. Although to date this effect has been observed and studied only in Ce0.8Gd0.2O1,9, one may expect that it will be found in other ionic and mixed conductors containing a large concentration of point defects. In this work, some practical applications of materials exhibiting the chemical strain effect are discussed. Based on the example of Ce0.8Gd0.2O1,9, mechanical structures built from these materials should exhibit exceptional mechanical stability and are therefore very attractive for use as components of solid oxide fuel cells (SOFC) or other devices subjected to large and frequent temperature variations. The ability of these materials to withstand large strain without accumulating large stress also makes them potentially useful as flexible elements in micro-electromechanical systems (MEMS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.