Abstract
Abstract This paper applies material presented by Chen et al. and by Chavent et al to practical reservoir problems. The pressure history-matching algorithm used is initially based on a discretized single-phase reservoir model. Multiphase effects are approximately treated in the single-phase model by multiplying the transmissibility and storage terms by saturation-dependent terms that are obtained from a multiphase simulator run. Thus, all the history matching is performed by a "pseduo" single-phase model. The multiplicative factors for transmissibility and storage are updated when necessary. The matching technique can change any model permeability thickness or porosity thickness value. Three field examples are given. Introduction History matching using optimal-control theory was introduced by two sets of authors. Their contributions were a major breakthrough in attacking the long-standing goal of automatic history matching. This paper extends the work presented by Chen et al. and Chavent et al. Specifically, we focus on three areas.We derive the optimal-control algorithm using a discrete formulation. Our reservoir simulator, which is a set of ordinary differential equations, is adjoined to the function to be minimized. The first variation is taken to yield equations for computing Lagrange multipliers. These Lagrange multipliers are then used for computing a gradient vector. The discrete formulation keeps the adjoint equations consistent with the reservoir simulator.We include the effects of saturation change in history-matching pressures. We do this in a fashion that circumvents the need for developing a full multiphase optimal-control code.We show detailed results of the application of the optimal-control algorithm to three field examples. DERIVATION OF ADJOINT EQUATIONS Most implicit-pressure/explicit-saturation-type, finite-difference reservoir simulators perform two calculation stages for each time step. The first stage involves solving an "expansivity equation" for pressure. The expansivity equation is obtained by summing the material-balance equations for oil, gas, and water flow. Once the pressures are implicitly obtained from the expansivity equation, the phase saturations can be updated using their respective balance equations. A typical expansivity equation is shown in Appendix B, Eq. B-1. When we write the reservoir simulation equations as partial differential equations, we assume that the parameters to be estimated are continuous functions of position. The partial-differential-equation formulation is partial-differential-equation formulation is generally termed a distributed-parameter system. However, upon solving these partial differential equations, the model is discretized so that the partial differential equations are replaced by partial differential equations are replaced by sets of ordinary differential equations, and the parameters that were continuous functions of parameters that were continuous functions of position become specific values. Eq. B-1 is a position become specific values. Eq. B-1 is a set of ordinary differential equations that reflects lumping of parameters. Each cell has three associated parameters: a right-side permeability thickness, a bottom permeability thickness, and a pore volume. pore volume.Once the discretized model is written and we have one or more ordinary differential equations per cell, we can then adjoin these differential equations to the integral to be minimized by using one Lagrange multiplier per differential equation. The ordinary differential equations for the Lagrange multipliers are now derived as part of the necessary conditions for stationariness of the augmented objective function. These ordinary differential equations are termed the adjoint system of equations. A detailed example of the procedure discussed in this paragraph is given in Appendix A. The ordinary-differential-equation formulation of the optimal-control algorithm is more appropriate for use with reservoir simulators than the partial-differential-equation derivation found in partial-differential-equation derivation found in Refs. 1 and 2. SPEJ P. 347
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.