Abstract

Heterologous expression systems play an important role in the analysis of structure-function relationships of mammalian P450s. In addition, these expression systems allow practical application of mammalian P450s. Genetically engineered fused enzymes between mammalian P450 and yeast NADPH-P450 reductase have possible applications in bioconversion processes. Combined use of techniques reported thus far could produce steroid hormones in the recombinant yeast cells harboring four P450 species, CYP11A1, CYP17A1, CYP21B1 and CYP11B1. In an Escherichia coli expression system, the technology of the construction of the mitochondrial P450 electron transport chain has been established. The recombinant E. coli cells expressing CYP27B1, adrenodoxin and NADPH-adrenodoxin reductase would be applicable to a bioconversion process to produce 1alpha,25-dihydroxyvitamin D3. We also demonstrated the usefulness of heterologous expression systems for human liver microsomal P450s for the prediction of drug metabolism in the human body. Microsomal fractions prepared from recombinant yeast, insect and mammalian cells are commercially available and play an important role in preclinical drug development. Application of mammalian P450 to bioremediation with genetic engineering has also been developed. Thus, mammalian P450s appear to have great potential for a wide range of practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call