Abstract

The application of machine learning (ML) techniques for understanding and predicting organic matter (OM) and harmful algal blooms (HABs) in freshwater systems has increased significantly with the availability of abundant data and advanced monitoring technologies. However, there is a lack of comprehensive reviews concentrating on practical applications and delving into the potential risks associated with misrepresentation or inflation in constructing ML models. This review aims to bridge these gaps by providing a comprehensive overview of various aspects of ML applications in the context of OM and HABs in freshwater systems. It covers practical ML applications for rapid assessment, early warning, and driver analysis, highlighting the diverse range of techniques employed in these areas. Furthermore, it discusses the challenges and considerations associated with data handling, including using in situ and remote sensing data and the importance of appropriate data-splitting techniques to avoid data leakage. To ensure unbiased and reproducible results, this review offers recommendations for model improvement, such as utilizing explainable ML techniques to gain insights into model behavior and avoiding overreliance on a single ML algorithm. It also emphasizes the significance of deploying ML models through user-friendly interfaces, enabling non-experts in ML to effectively utilize these models in real-world water environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.