Abstract

PurposeBecause of the increased use of robots in the industry, it has become inevitable for humans and robots to be able to work together. Therefore, human security has become the primary noncompromising factor of joint human and robot operations. For this reason, the purpose of this study was to develop a safe human-robot interaction software based on vision and touch.Design/methodology/approachThe software consists of three modules. Firstly, the vision module has two tasks: to determine whether there is a human presence and to measure the distance between the robot and the human within the robot’s working space using convolutional neural networks (CNNs) and depth sensors. Secondly, the touch detection module perceives whether or not a human physically touches the robot within the same work environment using robot axis torques, wavelet packet decomposition algorithm and CNN. Lastly, the robot’s operating speed is adjusted according to hazard levels came from vision and touch module using the robot’s control module.FindingsThe developed software was tested with an industrial robot manipulator and successful results were obtained with minimal error.Practical implicationsThe success of the developed algorithm was demonstrated in the current study and the algorithm can be used in other industrial robots for safety.Originality/valueIn this study, a new and practical safety algorithm is proposed and the health of people working with industrial robots is guaranteed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.