Abstract

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has significantly improved through advancements in fabrication methods, which have primarily focused on the perovskite absorber layer. The significance of improving the charge transport layer as the next crucial step toward achieving highly stable and efficient PSCs has also been emphasized. In inverted PSCs (i‐PSCs), the selection of a suitable p‐type hole‐transporting layer (HTL) has been restricted to mainly organic materials due to the rarity of p‐type inorganics. The instability and inherent disadvantages of organics necessitate the use of stable p‐type oxides as HTLs for i‐PSCs. Herein, uniform, conformal, and practical, yet thermal atomic layer deposition (ALD) for NiO is demonstrated by employing two different oxidant, ozone (O3) and hydrogen peroxide (H2O2). Both ALD‐NiO films are characterized by X‐ray diffraction and X‐ray reflection. By conducting X‐ray photoelectron spectroscopy analysis of the ALD‐NiO surfaces, a correlation between the oxidation power of the oxidant during ALD and the surface oxidation state of the ALD‐NiO films is established. Finally, the relationship between the oxidation state of the surfaces with different oxidant and the i‐PSC performance is verified. The fabricated i‐PSCs exhibit a PCE exceeding 19%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.