Abstract

The shortest path problem is to find a path between two vertices (nodes) on a given graph, such that the sum of the weights on its constituent edges is minimized. This problem has been intensively investigated over years, due to its extensive applications in graph theory, artificial intelligence, computer network and the design of transportation systems. The classic Dijkstra's algorithm was designed to solve the single-source shortest path problem for a static graph. It works starting from the source node and calculating the shortest path on the whole network. Noting that an upper bound of the distance between two nodes can be evaluated in advance on the given transportation network, we proposes a practical algorithm in this paper to calculate the shortest path. The proposed algorithm works on a sub-graph limited by the given upper bound of the distance between the two nodes, rather than on the whole network as did in Dijkstra's algorithm. Experimental results on real dataset with 150 nodes and 176 edges, which is a subnet of the road-map in the Maryland State in US, show that the proposed algorithm reduce the calculations by about 8% on average in comparison to the traditional Dijkstra's algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.