Abstract

We propose two novel contributions for measurement-based rendering of diffraction effects in surface reflectance of planar homogeneous diffractive materials. As a general solution for commonly manufactured materials, we propose a practical data-driven rendering technique and a measurement approach to efficiently render complex diffraction effects in real time. Our measurement step simply involves photographing a planar diffractive sample illuminated with an LED flash. Here, we directly record the resultant diffraction pattern on the sample surface due to a narrow-band point source illumination. Furthermore, we propose an efficient rendering method that exploits the measurement in conjunction with the Huygens-Fresnel principle to fit relevant diffraction parameters based on a first-order approximation. Our proposed data-driven rendering method requires the precomputation of a single diffraction look-up table for accurate spectral rendering of complex diffraction effects. Second, for sharp specular samples, we propose a novel method for practical measurement of the underlying diffraction grating using out-of-focus “bokeh” photography of the specular highlight. We demonstrate how the measured bokeh can be employed as a height field to drive a diffraction shader based on a first-order approximation for efficient real-time rendering. Finally, we also drive analytic solutions for a few special cases of diffraction from our measurements and demonstrate realistic rendering results under complex light sources and environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.