Abstract
A novel algorithmic framework for the robust detection and classification of machinery threats and other potentially harmful objects intruding onto a pipeline right-of-way (ROW) is designed from three perspectives: visibility improvement, context-based segmentation, and object recognition/classification. In the first part of the framework, an adaptive image enhancement algorithm is utilized to improve the visibility of aerial imagery to aid in threat detection. In this technique, a nonlinear transfer function is developed to enhance the processing of aerial imagery with extremely non-uniform lighting conditions. In the second part of the framework, the context-based segmentation is developed to eliminate regions from imagery that are not considered to be a threat to the pipeline. Context based segmentation makes use of a cascade of pre-trained classifiers to search for regions that are not threats. The context based segmentation algorithm accelerates threat identification and improves object detection rates. The last phase of the framework is an efficient object detection model. Efficient object detection �follows a three-stage approach which includes extraction of the local phase in the image and the use of local phase characteristics to locate machinery threats. The local phase is an image feature extraction technique which partially removes the lighting variance and preserves the edge information of the object. Multiple orientations of the same object are matched and the correct orientation is selected using feature matching by histogram of local phase in a multi-scale framework. The classifier outputs locations of threats to pipeline.�The advanced automatic image analysis system is intended to be capable of detecting construction equipment along the ROW of pipelines with a very high degree of accuracy in comparison with manual threat identification by a human analyst. �
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.