Abstract

In this study, a new thermographic phosphor for planar gas-phase thermometry is investigated. The thermographic phosphor used is composed of trivalent praseodymium (Pr3+) ions doped into a yttrium aluminum garnet (YAG) host. Spectrally-resolved emission data were taken in a furnace for temperatures up to 1,300 K. The emission spectra were used to develop a temperature measurement strategy utilizing a non-equilibrium population ratio. The developed temperature measurement technique was demonstrated in a turbulent heated air jet for exit temperatures ranging from 300 to 750 K. The results demonstrate the promise of the Pr:YAG phosphor for obtaining high-precision single-shot temperature measurements in gas-phase flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.