Abstract

A novel pre-treatment process for image segmentation, based on anisotropic diffusion and robust statistics, is presented in this paper. Image smoothing with edge preservation is shown to help upper limb segmentation (shoulder segmentation in particular) in MRI datasets. The anisotropic diffusion process is mainly controlled by an automated stopping function that depends on the values of voxel gradient. Voxel gradients are divided into two classes: one for high values, corresponding to edge voxels or noisy voxels, one for low values. The anisotropic diffusion process is also controlled by a threshold on voxel gradients that separates both classes. A global estimation of this threshold parameter is classically used. In this paper, we propose a new method based on a local robust estimation. It allows a better removing of noise while preserving edges in the images. An entropy criterion is used to quantify the ability of the algorithm to remove noise with different signal to noise ratios in synthetic images. Another quantitative evaluation criterion based on the Pratt Figure of Merit (FOM) is proposed to evaluate the edge preservation and their location accuracy with respect to a manual segmentation. The results on synthetic and MRI data of shoulder show the assets of the local model in terms of areas homogeneity and edges locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call