Abstract

Recent advances in remote sensing open up unprecedented opportunities to obtain a rich set of visual features of objects on the earth's surface. In this paper, we focus on a single-image super-resolution (SISR) problem in remote sensing, where the objective is to generate a reconstructed satellite image of high quality (i.e., a high spatial resolution) from a satellite image of relatively low quality. This problem is motivated by the lack of high quality satellite images in many remote sensing applications (e.g., due to the cost of high resolution sensors, communication bandwidth constraints, and historic hardware limitations). Two important challenges exist in solving our problem: i) it is not a trivial task to reconstruct a satellite image of high quality that meets the human perceptual requirement from a single low quality image; ii) it is challenging to rigorously quantify the uncertainty of the results of an SISR scheme in the absence of ground truth data. To address the above challenges, we develop PQA-CNN, a perceptual quality-assured conventional neural network framework, to reconstruct a high quality satellite image from a low quality one by designing novel uncertainty-driven neural network architectures and integrating an uncertainty quantification model with the framework. We evaluate PQA-CNN on a real-world remote sensing application on land usage classifications. The results show that PQA-CNN significantly outperforms the state-of-the-art super-resolution baselines in terms of accurately reconstructing high-resolution satellite images under various evaluation scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call