Abstract
Abstract3D surface reconstruction from point clouds is a key step in areas such as content creation, archaeology, digital cultural heritage and engineering. Current approaches either try to optimize a non‐data‐driven surface representation to fit the points, or learn a data‐driven prior over the distribution of commonly occurring surfaces and how they correlate with potentially noisy point clouds. Data‐driven methods enable robust handling of noise and typically either focus on a global or a local prior, which trade‐off between robustness to noise on the global end and surface detail preservation on the local end. We propose PPSurf as a method that combines a global prior based on point convolutions and a local prior based on processing local point cloud patches. We show that this approach is robust to noise while recovering surface details more accurately than the current state‐of‐the‐art. Our source code, pre‐trained model and dataset are available at https://github.com/cg‐tuwien/ppsurf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.