Abstract
The security of wireless sensor networks is a hot topic in current research. Game theory can provide the optimal selection strategy for attackers and defenders in the attack-defense confrontation. Aiming at the problem of poor generality of previous game models, we propose a generalized Bayesian game model to analyze the intrusion detection of nodes in wireless sensor networks. Because it is difficult to solve the Nash equilibrium of the Bayesian game by the traditional method, a parallel particle swarm optimization is proposed to solve the Nash equilibrium of the Bayesian game and analyze the optimal action of the defender. The simulation results show the superiority of the parallel particle swarm optimization compared with other heuristic algorithms. This algorithm is proved to be effective in finding optimal defense strategy. The influence of the detection rate and false alarm rate of nodes on the profit of defender is analyzed by simulation experiments. Simulation experiments show that the profit of defender decreases as false alarm rate increases and decreases as detection rate decreases. Using heuristic algorithm to solve Nash equilibrium of Bayesian game provides a new method for the research of attack-defense confrontation. Predicting the actions of attacker and defender through the game model can provide ideas for the defender to take active defense.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.