Abstract

Rapid growth of branches in a peach tree restricts the light penetration and air ventilation within the orchard, which lowers fruit quality and promotes the occurrence of diseases and insects. Our previous works showed that PpDELLA1 and PpDELLA2 repress the rapid growth of annual shoots. Proteins that interact with DELLA are vital for its function. In this study, seven PpPIFs (PpPIF1, -2, -3, -4, -6, -7 and -8) were identified in the peach genome and contain a conserved bHLH domain. Among the seven PpPIFs, PpPIF8 interacted with PpDELLA2 through an unknown motif in the C-terminal and/or the bHLH domain. Overexpression of PpPIF8 in Arabidopsis promotes plant height and branch numbers. Hypocotyl elongation was significantly enhanced by PpPIF8 under weak light intensity. PpPIF8 overexpressed in Arabidopsis and transiently expressed in peach seedlings upregulated the transcription of YUCCA and SAUR19 and downregulated SHY1 and -2. Additionally, PpPIF4 and -8 were significantly induced by weak light. Phylogentic analysis and intron patterns of the bHLH domain strongly suggested that PIFs from six species could be divided into two groups of different evolutionary origins. These results lay a foundation for the further study of the repression of shoot growth by PpDELLA2 through protein interaction with PpPIF8 in peach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call