Abstract

Kidney is one of the most important organs of the body and the mammalian kidney development is essential for kidney unit formation. The key process of kidney development is metanephric development, where mesenchymal-epithelial transition (MET) plays a crucial role. Here we investigated the biological function of PPP3CA in metanephric mesenchyme (MM) cells. qRT-PCR and Western blotting were used to detect PPP3CA and MET makers expression in mK3, mK4 cells respectively at mRNA and protein level. Subsequently, PPP3CA was stably knocked down via lentivirus infection in mK4 cells. Flow cytometry, EdU/CCK-8 assay, wound healing assay were conducted to clarify the regulation of PPP3CA on cell apoptosis, proliferation and migration respectively. PPP3CA was expressed higher in epithelial-like mK4 cells than mesenchyme-like mK3 cells. Thus, PPP3CA was silenced in mK4 cells and PPP3CA deficiency promoted E-cadherin expression, cell apoptosis. Moreover, PPP3CA knock down attenuated cell proliferation and cell migration in mK4 cell. The underlying mechanism was associated with the dephosphorylation of PPP3CA on ERK1/2. Taken together, our results indicated that PPP3CA mediated MET process and cell behaviors of MM cells, providing new foundation for analyzing potential regulator in kidney development process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call