Abstract
Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, we observe that in a continuous action space, PPO can prematurely shrink the exploration variance, which leads to slow progress and may make the algorithm prone to getting stuck in local optima. Drawing inspiration from CMA-ES, a black-box evolutionary optimization method designed for robustness in similar situations, we propose PPO-CMA, a proximal policy optimization approach that adaptively expands the exploration variance to speed up progress. With only minor changes to PPO, our algorithm considerably improves performance in Roboschool continuous control benchmarks. Our results also show that PPO-CMA, as opposed to PPO, is significantly less sensitive to the choice of hyperparameters, allowing one to use it in complex movement optimization tasks without requiring tedious tuning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.