Abstract

Herein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer. The obtained results revealed the successful synthesis and functionalization of the magnetic nanocomposite. The adsorbents exhibited good magnetic properties with high saturation magnetization and high specific surface area. The adsorption isotherms and kinetics of anionic dyes were described by the Freundlich and pseudo-second-order models, respectively. It was found that the kinetics of adsorption of both the investigated dyes by the dendrimer-functionalized magnetic composite is considerably faster than the magnetic composite under the same condition. The adsorption capacity of the dendrimer-functionalized magnetic composite for investigated direct and acid dyes was 173.7 and 122.5 mg/g, respectively, which was higher than those of the existing magnetic adsorbents. This work provides new insights into the synthesis and application of hybrid magnetic adsorbents with synergistic properties of nanoporous metal-organic frameworks and dendrimer with a large number of functional groups for the removal of organic dyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call