Abstract

Protein-polymer conjugates are used to treat several diseases. PEGylation, i.e. the modification with poly(ethylene glycol) (PEG) is the currently used strategy. However, due to its non-biodegradability, the design of effective and degradable conjugates is of both academic and industry potential. We present the preparation and studies of the activity and stability of novel biodegradable myoglobin-polyphosphoester conjugates. Poly(ethyl ethylene phosphate) (PEEP) is a water-soluble polyphosphoester, which had been reported to be biocompatible and biodegradable. PEEP is a promising candidate as a degradable substitute for the “gold standard” PEG, which can cause long-term effects, as it is not degradable. PEEPylated conjugates with a variable degree of polymer grafting were synthesized, characterized (with online triple detection size exclusion chromatography, mass spectrometry, and gel electrophoresis), and compared with PEGylated analogs. We highlight differences in how the structure, the number, and the length of the polymer influence the properties of the conjugates. Overall, the analyses conducted (including activity assay, calorimetry, and fluorimetry measurements) show that the covalent attachment of the polymer does not irrevocably affect the protein’s features under physiological conditions, suggesting the potential of this new class of polymers for the design of a new generation of fully degradable conjugates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.