Abstract

Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H2) gas due to its high catalytic activity and low resistivity. However, the solid structure of NiO imposes limitations on the gas response kinetics of H2 gas molecules, resulting in a slower electron-hole transit and reduced gas response value. Herein, a unique NiO@CuO NFs with porous sharp-tip and nanospheres morphology was successfully synthesized by using a metal-organic framework (MOF) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs describes outstanding selectivity towards H2 gas, including a high sensitivity of response value (170 to 20 ppm at 150°C), is almost 28.3% higher than that of porous Ni-MOF, low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. The study also explored the impact of relative humidity to evaluate the sensor performance under real-world conditions. The boosted hydrogen dioxide sensing properties may be attributed to synergistic effects of numerous factors including p-p heterojunction at the interface between NiO and CuO nanoflowers, especially a porous sharp-tip MOF structure and rough surface of nanospheres as well as the chemical sensitization effect of NiO. This research offers a viable method for creating unique MOS heterostructures from Ni-MOF and CuO that have unique morphologies and compositions that could be used for H2 gas sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call