Abstract

Obesity is a widespread problem within modern society, serving to increase the risk of cardiovascular, metabolic, and neurodegenerative disorders. Peroxisome proliferator-activated receptor gamma (PPARγ) and PPARγ coactivator 1 α (PGC1α) play a key role in the regulation of cellular energy metabolism and is implicated in the pathology of these diseases. This study examined the association between polymorphisms of the PPARG and PPARGC1A genes and individual variability in weight loss in response to physical activity intervention. 39 obese Ukrainian women (44.4 ± 7.5years, BMI > 30.0kg/m2) undertook a 3-month fitness program whilst following a hypocaloric diet (~ 1500cal). Anthropometric and biochemical measurements took place before and after the program. Single nucleotide polymorphisms within or near PPARG (n = 94) and PPARGC1A (n = 138) were identified and expression of PPARG mRNA was measured via reverse transcription and amplification. The association between DNA polymorphisms and exercise-induced weight loss, initial body mass, biochemistry and PPARG expression was determined using one-way analysis of variance (ANOVA). The present intervention induced significant fat loss in all participants (total fat: 40.3 ± 5.3 vs 36.4 ± 5.7%; P < 0.00001). Only one polymorphism (rs17650401 C/T) within the PPARGC1A gene was found to be associated with fat loss efficiency after correction for multiple testing, with T allele carriers showing the greatest reduction in body fat percentage (2.5-fold; P = 0.00013) compared to non-carriers. PPARGC1A (rs17650401) is associated with fat loss efficiency of the fitness program in obese women. Further studies are warranted to test whether this variation is associated with fat oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.