Abstract
Cisplatin injury to the kidney is characterized, in part, by inhibition of substrate oxidation, inflammation, and tubular cell death in the form of apoptosis and necrosis. Recently, we demonstrated that cisplatin-induced inhibition of substrate oxidation can be reversed by the administration of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) ligands, resulting in amelioration of renal function. We therefore hypothesize that by improving fatty acid oxidation in vivo might protect renal function by reducing both apoptosis and necrosis in cisplatin-treated mice. Mice subjected to a single intraperitoneal injection of cisplatin developed acute renal failure (ARF) at days 3 and 4. At day 4 after cisplatin injection mRNA, protein levels and enzyme activity of proapoptotic renal endonuclease G (Endo G) were increased compared with saline-treated mice. In situ hybridization and immunohistochemical studies localized the increased expression of Endo G mRNA to the cytosolic compartment and Endo G protein to the nuclear compartment of proximal tubules in cisplatin-treated mice. Pretreatment of PPAR-alpha wild-type mice with PPAR-alpha ligand WY-14643 reduced significantly cisplatin-induced increased protein expression and enzyme activity of Endo G and prevented the nuclear translocation of mitochondrial Endo G. Morphological examination of tubular injury in the PPAR-alpha wild-type mice that received PPAR-alpha ligand and cisplatin did show significant amelioration of acute tubular necrosis, as well as a significant reduction in the number of apoptotic cells in the proximal tubule when compared with the cisplatin-treated group. In contrast, in PPAR-alpha-null mice treated with the ligand and cisplatin, Endo G protein expression was not reduced and this was accompanied by lack of protection of kidney function. We conclude that PPAR-alpha ligand protects against cisplatin-induced renal injury via a PPAR-alpha-dependent mechanism by reducing the expression and enzyme activity of proximal tubule Endo G, which results in amelioration of both proximal tubule cell apoptosis and necrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.