Abstract

Maternal nutritional deficiency in-utero is known to predict risk of complex disorders like cardiovascular disease, diabetes and many neurological disorders in the offspring and vitamin B12 is one such critical micronutrient. Here we performed 2D-DIGE followed by MALDI TOF/TOF analysis to identify proteins that are differentially expressed in liver of pups born to mothers fed vitamin B12 deficient diet vis-à-vis control diet. To further establish causality, we analyzed the effect of B12 rehabilitation at parturition on the protein levels and the phenotype in pups. We identified 38 differentially expressed proteins that were enriched in pathways involved in the regulation of amino acid, lipid and carbohydrate metabolism. Further, three enzymes in the β-oxidation pathway (hydroxyacyl-coenzyme A dehydrogenase, medium-chain specific acyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase) were down-regulated in pups born to mothers fed vitamin B12 deficient diet. We observed age-dependent differential expression of peroxisome proliferator activated-receptor (PPAR) α and γ in the deficient pups. Interestingly, expression of 27 proteins that were differentially expressed was restored to the control levels after rehabilitation of female rats with vitamin B12 from parturition. Our study thus provides the first evidence that maternal vitamin B12 deficiency influences lipid and other micronutrient metabolism in pups through regulation of PPAR signaling pathway. Maternal vitamin B12 deficiency has been shown to predict the onset of complex disorders like atherosclerosis, type II diabetes etc. in the next generation during their adulthood. We have shown earlier that pups born to female rats fed with vitamin B12 deficient diet were obese and developed high levels of other intermediate traits such as triglycerides, cholesterol etc. that are related to the risk of diabetes and cardiovascular disorders. In this piece of work using differential proteomic approach we have identified the altered metabolic processes in the liver of vitamin B12 deficient pups. We have also documented that the proteins involved in β-oxidation pathway are down-regulated. Further, differential expression of PPARα and PPARγ was evidently documented as the master regulator for the alteration of lipid, amino acid and carbohydrate metabolism during maternal vitamin B12 deficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call