Abstract

Fasting leads to a significant downregulation of the hypothalamus-pituitary-thyroid axis, and peroxisome proliferator-activated receptor (PPAR) α is a key transcription factor in mediating a magnitude of adaptive responses to fasting. In this study, we examined the role of PPARα in regulation of the hypothalamus-pituitary-thyroid axis. Thyroid-stimulating hormone β-subunit (TSHβ) mRNA abundance was being reduced in response to treatment of TαT1 cells with PPARα agonists (p < 0.05), indicating an inhibitory transcriptional regulation of TSHβ by PPARα. As expected, fasting significantly downregulated TSHβ mRNA expression in a two-factorial study with fed or fasted wild-type (WT) and PPARα knockout mice (p < 0.05). In contrast to the in vitro data, fasted PPARα knockout mice revealed lower mRNA concentrations of pituitary TSHβ (-64%) and TSH-regulated thyroid genes, and lower plasma concentrations of thyroxine (T4, -25%), triiodothyronine (T3, -25%), free T4 (-60%), and free T3 (-35%) than fasted WT mice (p < 0.05). Those differences were not observed in fed mice. Data from thyrotrope cells revealed that PPARα could contribute to the fasting-associated downregulation of the TSHβ mRNA expression. In a mouse model, fasting led to a significant reduction in TSHβ mRNA level, but unexpectedly this effect was stronger in mice lacking PPARα than in WT mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call