Abstract

Peroxisome proliferator-activated receptor (PPAR)-γ is a ligand-activated transcription factor of nuclear hormone receptor superfamily. Thiazolidinedione rosiglitazone is a potent agonist of PPARγ which was shown to induce neuroprotection in animal models of focal ischemia and spinal cord injury. We currently evaluated the therapeutic potential of rosiglitazone (6 mg/kg at 5 min, 6 h and 24 h; i.p.) following controlled cortical impact (CCI)-induced traumatic brain injury (TBI) in adult mice. CCI injury increased the cortical PPARγ mRNA levels which were further elevated by rosiglitazone treatment. In addition, rosiglitazone treatment significantly decreased the cortical lesion volume measured at 7 days compared to vehicle treatment (by 56 ± 7%; p < 0.05; n = 6/group). Following TBI, the spared cortex of the rosiglitazone group showed significantly less numbers of GSI-B4 + activated microglia/macrophages and ICAM1 + capillaries, and curtailed induction of pro-inflammatory genes IL6, MCP1 and ICAM1 compared to vehicle group. Rosiglitazone-treated mice also showed significantly less number of TUNEL + apoptotic neurons and curtailed induction of caspase-3 and Bax, compared to vehicle control. In addition, rosiglitazone significantly enhanced the post-TBI expression of the neuroprotective chaperones HSP27, HSP70 and HSP32/HO1, and the anti-oxidant enzymes catalase, Cu/Zn-SOD and Mn-SOD, compared to vehicle. Treatment with GW9662 (a specific PPARγ antagonist) prevented all the above PPARγ-mediated actions. Thus, PPARγ activation confers neuroprotection after TBI by anti-inflammatory, anti-apoptotic and anti-oxidative mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.