Abstract

Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production.

Highlights

  • Leishmaniasis is a collection of parasitic diseases caused by two dozens species of protozoa belonging to the genus Leishmania and spread by the bite of a sandfly

  • Perez-Santos and Talamas-Rohana [14] demonstrated that indomethacin (INDO) administration induced the intracellular killing of L. mexicana parasites in infected BALB/c mice; these results suggest that suppression of PGs by INDO promotes the development of a protective Th1 type response in susceptible mice by enhancement of IL-12, IFN-γ, and Nitric Oxide (NO) production

  • In L. mexicana-infected macrophages, the activation of cytosolic phospholipase A2 (cPLA2) by phosphorylation and the expression of COX-2 are triggered. The activation of these enzymes is considered necessary within the proinflammatory response, whereas Peroxisome proliferator-activated receptors (PPAR) activation is considered as an important part of the anti-inflammatory process, both in vivo and in vitro [20,21,22]

Read more

Summary

Introduction

Leishmaniasis is a collection of parasitic diseases caused by two dozens species of protozoa belonging to the genus Leishmania and spread by the bite of a sandfly. Localized cutaneous leishmaniasis (LCL) is characterized by ulcerative skin lesions that develop at the site of the bite of the sandfly; diffuse cutaneous leishmaniasis (DCL), which consists of nonulcerative nodules that spread throughout the skin, leads to severe mutilation because of the invasion of naso- and oropharyngeal mucosa [2, 3]. PPARγ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice while the role of PPARβ/δ in this process has been reported only in mice, and no data are available for PPARα [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call