Abstract

The aim of the study was to investigate the impact of hyperthyroidism on the characteristics of the islet insulin secretory response to glucose, particularly the consequences of competition between thyroid hormone and peroxisome proliferator-activated receptor (PPAR)alpha in the regulation of islet adaptations to starvation and dietary lipid-induced insulin resistance. Rats maintained on standard (low-fat/high-carbohydrate) diet or high-fat/low-carbohydrate diet were rendered hyperthyroid (HT) by triiodothyronine (T(3)) administration (1 mg.kg body wt(-1).day(-1) sc, 3 days). The PPARalpha agonist WY14643 (50 mg/kg body wt ip) was administered 24 h before sampling. Glucose-stimulated insulin secretion (GSIS) was assessed during hyperglycemic clamps or after acute glucose bolus injection in vivo and with step-up and step-down islet perifusions. Hyperthyroidism decreased the glucose responsiveness of GSIS, precluding sufficient enhancement of insulin secretion for the degree of insulin resistance, in rats fed either standard diet or high-fat diet. Hyperthyroidism partially opposed the starvation-induced increase in the glucose threshold for GSIS and decrease in glucose responsiveness. WY14643 administration restored glucose tolerance by enhancing GSIS in fed HT rats and relieved the impact of hyperthyroidism to partially oppose islet starvation adaptations. Competition between thyroid hormone receptor (TR) and PPARalpha influences the characteristics of GSIS, such that hyperthyroidism impairs GSIS while PPARalpha activation (and increased dietary lipid) opposes TR signaling and restores GSIS in the fed hyperthyroid state. Increased islet PPARalpha signaling and decreased TR signaling during starvation facilitates appropriate modification of islet function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.