Abstract

BackgroundTo assign structural and functional annotations to the ever increasing amount of sequenced proteins, the main approach relies on sequence-based homology search methods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov Models, which rely on significant alignments of query sequences to annotated proteins or protein families. While powerful, these approaches do not take coevolution between residues into account. Taking advantage of recent advances in the field of contact prediction, we propose here to represent proteins by Potts models, which model direct couplings between positions in addition to positional composition, and to compare proteins by aligning these models. Due to non-local dependencies, the problem of aligning Potts models is hard and remains the main computational bottleneck for their use.MethodsWe introduce here an Integer Linear Programming formulation of the problem and PPalign, a program based on this formulation, to compute the optimal pairwise alignment of Potts models representing proteins in tractable time. The approach is assessed with respect to a non-redundant set of reference pairwise sequence alignments from SISYPHUS benchmark which have lowest sequence identity (between 3% and 20%) and enable to build reliable Potts models for each sequence to be aligned. This experimentation confirms that Potts models can be aligned in reasonable time (1'37'' in average on these alignments). The contribution of couplings is evaluated in comparison with HHalign and independent-site PPalign. Although Potts models were not fully optimized for alignment purposes and simple gap scores were used, PPalign yields a better mean F_1 score and finds significantly better alignments than HHalign and PPalign without couplings in some cases.ConclusionsThese results show that pairwise couplings from protein Potts models can be used to improve the alignment of remotely related protein sequences in tractable time. Our experimentation suggests yet that new research on the inference of Potts models is now needed to make them more comparable and suitable for homology search. We think that PPalign’s guaranteed optimality will be a powerful asset to perform unbiased investigations in this direction.

Highlights

  • To assign structural and functional annotations to the ever increasing amount of sequenced proteins, the main approach relies on sequence-based homology search methods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov Models, which rely on significant alignments of query sequences to annotated proteins or protein families

  • The main tools for homology search are based on profile Hidden Markov Models, which model position-specific composition, insertion and deletion probabilities of each family of homologous proteins

  • We present here PPalign, the alignment method we introduced in ComPotts to optimally align two Potts models representing proteins in tractable time with respect to our Integer Linear Programming (ILP) formulation of the problem

Read more

Summary

Introduction

To assign structural and functional annotations to the ever increasing amount of sequenced proteins, the main approach relies on sequence-based homology search methods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov Models, which rely on significant alignments of query sequences to annotated proteins or protein families. While powerful, these approaches do not take coevolution between residues into account. One can cite for instance experiments of Ranganathan et al on the WW domain who showed by experimentally testing libraries of artificial sequences of the WW domain that coevolution information is necessary to reproduce the functional properties of native proteins [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.