Abstract

Abnormal hyperphosphorylation of tau appears to be crucial in neurofibrillary degeneration in Alzheimer's disease (AD). Previous studies suggest that a down-regulation of protein phosphatase 2A (PP2A), the major tau phosphatase in human brain, contributes to tau hyperphosphorylation in AD. However, the effects of PP2A down-regulation on site-specific tau hyperphosphorylation is not well understood. In the present study, we showed that PP2A dephosphorylated tau at several phosphorylation sites with different efficiencies. Among the sites studied, Thr205, Thr212, Ser214, and Ser262 were the most favorable sites, and Ser199 and Ser404 were the least favorable sites for PP2A in vitro. Inhibition of PP2A with okadaic acid in metabolically active rat brain slices caused inhibition of glycogen synthase kinase-3beta (GSK-3beta) via an increase in its phosphorylation at Ser9. GSK-3beta phosphorylated tau at many sites, with Ser199, Thr205, and Ser396 being the most favorable sites in cells. The overall alterations in tau phosphorylation induced by PP2A inhibition were the result of the combined effects of both reduced tau dephosphorylation due to PP2A inhibition directly and reduced phosphorylation by GSK-3beta due to its inhibition. Because the impacts of tau phosphorylation on its biological activity and on neurofibrillary degeneration are site-specific, this study provides a new insight into the role of PP2A down-regulation in neurofibrillary degeneration in AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call