Abstract

In this paper, we propose a novel Privacy-Preserving clearance mechanism for Local Energy Markets (PP-LEM), designed for computational efficiency and social welfare. PP-LEM incorporates a novel competitive game-theoretical clearance mechanism, modelled as a Stackelberg Game. Based on this mechanism, a privacy-preserving market model is developed using a partially homomorphic cryptosystem, allowing buyers’ reaction function calculations to be executed over encrypted data without exposing sensitive information of both buyers and sellers. The comprehensive performance evaluation demonstrates that PP-LEM is highly effective in delivering an incentive clearance mechanism with computational efficiency, enabling it to clear the market for 200 users within the order of seconds while concurrently protecting user privacy. Compared to the state of the art, PP-LEM achieves improved computational efficiency without compromising social welfare while still providing user privacy protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.