Abstract

Deng-Fong Lin is a professor in the Department of Civil and Ecological Engineering at IShou University in Taiwan, Republic of China.This study investigates the pozzolanic reactions and compressive strength of the blended cement manufactured using synthetic slag obtained from municipal solid waste incinerator (MSWI) cyclone ash and scrubber ash as partial replacement of portland cement. The synthetic slag was made by co-melting the MSWI scrubber ash and cyclone ash mixtures at 1400 °C for 30 min. Following pulverization, the different types of slag were blended with cement as cement replacement at ratios ranging from 10 to 40 wt %. The synthetic slag thus obtained was quantified, and the characteristics of the slag-blended cement pastes were examined. These characteristics included the pozzolanic activity, compressive strength, hydration activity, crystal phases, species, and microstructure at various ages. The 90-day compressive strength developed by slag-blended cement pastes with 10 and 20 wt % of the cement replaced by the synthetic slag outperformed ordinary portland cement by 1-7 MPa. X-ray diffraction species analyses indicated that the hydrates in the slag-blended cement pastes were mainly portlandite, the calcium silicate hydrate gels, and calcium aluminate hydrate salts, similar to those found in ordinary portland cement paste. Differential thermal and thermogravimetric analysis also indicated that the slag reacted with port

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call