Abstract
One class of universal mechanisms that generate power-law probability distributions is that of random multiplicative processes. In this paper, we consider a multiplicative Langevin equation driven by non-Gaussian colored multipliers. We analytically derive a formula that relates the power-law exponent to the statistics of the multipliers and numerically confirm its validity using multiplicative noise generated by chaotic dynamical systems and by a two-valued Markov process. We also investigate the relationship between our treatment and the large deviation analysis of time series, and demonstrate the appearance of log-periodic fluctuations superimposed on the power-law distribution due to the non-Gaussian nature of the multipliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.