Abstract

This comprehensive review explores recent developments in Proton Exchange Membrane Fuel Cells (PEMFCs) and evaluates their alignment with the ambitious targets established by the U.S. Department of Energy (DOE). Notable advancements have been made in developing catalysts, membrane technology advancements, gas diffusion layers (GDLs), and enhancements in bipolar plates. Notable findings include using carbon nanotubes and graphene oxide in membranes, leading to substantial performance enhancements. Innovative coatings and materials for bipolar plates have demonstrated improved corrosion resistance and reduced interfacial contact resistance, approaching DOE targets. Nevertheless, the persistent trade-off between durability and cost remains a formidable challenge. Extending fuel cell lifetimes to DOE standards often necessitates higher catalyst loadings, conflicting with cost reduction objectives. Despite substantial advancements, the ultimate DOE goals of USD 30/kW for fuel cell electric vehicles (FCEVs) and USD 600,000 for fuel cell electric buses (FCEBs) remain elusive. This review underscores the necessity for continuous research and innovation, emphasizing the importance of collaborative efforts among academia, industry, and government agencies to overcome the remaining technical barriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call